University Core and Graduation Requirements

<table>
<thead>
<tr>
<th>University Core Requirements:</th>
<th>Suggested Sequence of Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Core Requirements:</td>
<td>FRESHMAN YEAR</td>
</tr>
<tr>
<td>Requirements</td>
<td>**1st Semester</td>
</tr>
<tr>
<td>#Classes</td>
<td>2nd Semester</td>
</tr>
<tr>
<td>Hours</td>
<td>SOPHOMORE YEAR</td>
</tr>
<tr>
<td>Classes</td>
<td>3rd Semester</td>
</tr>
<tr>
<td>Religion Cornerstones</td>
<td>Total Hours</td>
</tr>
<tr>
<td>Teachings and Doctrine of The Book of Mormon</td>
<td>REL A 275</td>
</tr>
<tr>
<td>Jesus Christ and the Everlasting Gospel</td>
<td>REL A 250</td>
</tr>
<tr>
<td>Foundations of the Restoration</td>
<td>REL C 225</td>
</tr>
<tr>
<td>The Eternal Family</td>
<td>REL C 200</td>
</tr>
<tr>
<td>The Individual and Society</td>
<td>Total Hours</td>
</tr>
<tr>
<td>American Heritage</td>
<td>from approved list</td>
</tr>
<tr>
<td>Global and Cultural Awareness</td>
<td>3.0</td>
</tr>
<tr>
<td>First Year Writing</td>
<td>PHCS 416 or WRTG 316</td>
</tr>
<tr>
<td>Advanced Written and Oral Communications</td>
<td>1</td>
</tr>
<tr>
<td>Quantitative Reasoning</td>
<td>MATH 113*</td>
</tr>
<tr>
<td>Languages of Learning (Math or Language)</td>
<td>4.0</td>
</tr>
<tr>
<td>Arts, Letters, and Sciences</td>
<td>Total Hours</td>
</tr>
<tr>
<td>Civilization 1</td>
<td>PHCS 121 (FWSp)</td>
</tr>
<tr>
<td>Civilization 2</td>
<td>PHCS 123 (FWSp)</td>
</tr>
<tr>
<td>Arts</td>
<td>MATH 112 (FWSpSu)</td>
</tr>
<tr>
<td>Letters</td>
<td>3.0</td>
</tr>
<tr>
<td>Biological Science</td>
<td>3.0</td>
</tr>
<tr>
<td>Social Science</td>
<td>MATH 213/215/314/334 (9 cr) sequence can be taken in place of the MATH 302/303 (8 cr) sequence.</td>
</tr>
<tr>
<td>Core Enrichment: Electives</td>
<td>Total Hours</td>
</tr>
<tr>
<td>Religion Electives</td>
<td>The MATH 213/215/314/334 (9 cr) sequence can be taken in place of the MATH 302/303 (8 cr) sequence.</td>
</tr>
<tr>
<td>Open Electives</td>
<td></td>
</tr>
<tr>
<td>Graduation Requirements:</td>
<td></td>
</tr>
<tr>
<td>Minimum residence hours required</td>
<td>30.0</td>
</tr>
<tr>
<td>Minimum hours needed to graduate</td>
<td>120.0</td>
</tr>
</tbody>
</table>

*These classes fill both University Core and Program Requirements (7 hours overlap)

Note: Students are encouraged to complete an average of 15 credit hours each semester or 30 credit hours each year, which could include spring and/or summer terms. Taking fewer credits substantially increases the cost and the number of semesters to graduate.
BS in Physics and Astronomy (694832)
2022-2023 Program Requirements (68 - 69 Credit Hours)

No more than 3 hours of D credit is allowed in major courses.

REQUIREMENT 1
Complete 1 option

OPTION 1.1 Complete 20 courses
C S 111 - Introduction to Computer Science 3.0
*MATH 113 - Calculus 2 4.0
PHSCS 121 - Introduction to Newtonian Mechanics 3.0
PHSCS 123 - Introduction to Waves, Optics, and Thermodynamics 3.0
PHSCS 127 - Descriptive Astronomy 3.0
PHSCS 191 - Introduction to Physics Careers and Research 1 0.5
PHSCS 220 - Introduction to Electricity and Magnetism 3.0
*PHSCS 222 - Modern Physics 3.0
PHSCS 227 - Solar System Astronomy 3.0
PHSCS 228 - Stellar and Extragalactic Astronomy 3.0
PHSCS 230 - Computational Physics Lab 1 1.0
PHSCS 291 - Introduction to Physics Careers and Research 2 0.5
PHSCS 318 - Introduction to Mathematical Physics 3.0
PHSCS 321 - Mechanics 3.0
PHSCS 329 - Observational Astronomy 3.0
PHSCS 330 - Computational Physics Lab 2 1.0
PHSCS 427 - Stellar Astrophysics 3.0
PHSCS 428 - Galaxies and Cosmology 3.0
PHSCS 441 - Electricity and Magnetism 3.0
PHSCS 451 - Quantum Mechanics 3.0

Note: Phscs 191 should be taken the first semester as a freshman. Phscs 291 should be taken the first semester as a sophomore.

REQUIREMENT 2
Complete 2 courses
PHSCS 360 - Statistical and Thermal Physics 3.0
PHCS 442 - Electrodynamics 3.0
PHSCS 452 - Applications of Quantum Mechanics 3.0
PHSCS 471 - Principles of Optics 3.0

REQUIREMENT 3
Complete 1 option

OPTION 3.1 Complete 2 courses
MATH 302 - Mathematics for Engineering I 4.0
MATH 303 - Mathematics for Engineering 2 4.0

OPTION 3.2 Complete 3 courses
MATH 313 - (Not currently offered) 4.0
MATH 314 - Calculus of Several Variables 3.0
MATH 334 - Ordinary Differential Equations 3.0

OPTION 3.3 Complete 4 courses
MATH 213 - Elementary Linear Algebra 2.0
MATH 215 - Computational Linear Algebra 1.0
MATH 314 - Calculus of Several Variables 3.0
MATH 334 - Ordinary Differential Equations 3.0

REQUIREMENT 4
Complete 1 option

SENIOR THESIS:

Complete a senior thesis, including the following:

A. Choose a research mentor and group as early as possible, starting with information in Phscs 191 and 192, and discussions with faculty, your advisor, and the senior thesis coordinator. It is best to start as a freshman or sophomore. Some internships may qualify for your project.

OPTION 4.1 Complete 2.0 hours from the following course(s)

PHSCS 498R - Senior Thesis 2.0v

PHSCS 498R - Senior Thesis 2.0v

You may take up to 2 credit hours.

REQUIREMENT 5
Students are required to take the Physics "Major Field Test" the last semester before they graduate. The test is a standardized assessment of undergraduate physics written by ETS (Educational Testing Service). The ETS website contains a description of the exam and sample problems: http://www.ets.org/mft/about/content/physics. Results of the exam do not appear on the transcript or affect the GPA. Students should contact the Physics undergraduate secretary to make arrangements for taking the exam; typically it's done in the Testing Center before mid-semester.

Note: Students planning on graduate school in astronomy should consider taking all four of Phscs 360, 442, 452, 471, instead of only two. Gain statistics and computer programming skills beyond what you get in this major by taking courses such as Stat 201 (Statistics for Engineers and Scientists) and courses such as Phscs 430 (Computational Physics 3) and Me En 373 (Introduction to Scientific Computing).

THE DISCIPLINE:

Over the centuries physicists and astronomers have studied the fundamental principles that govern the structure and dynamics of matter and energy in the physical world, from subatomic particles to the cosmos. Physicists also apply this understanding to the development of new technologies. For example, physicists invented the first lasers and semiconductor electronic devices.

Physics and astronomy students learn to approach complex problems in science and technology from a broad background in mechanics, electricity and magnetism, statistical and thermal physics, quantum mechanics, relativity, and optics. The tools they develop at BYU include problem solving by mathematical and computational modeling, as well as experimental discovery and analysis. All students gain professional experience in a research, capstone, or internship project, usually in close association with faculty. Together these experiences can provide excellent preparation for employment or for graduate studies in physics, other sciences, engineering, medicine, law, or business.

Most physicists and astronomers work in research and development in industrial, government, or university labs to solve new problems in technology and science. They also share the beauty discovered in our physical universe by teaching in high schools, colleges, and universities.

CAREER OPPORTUNITIES:

A degree in physics or physics-astronomy can provide:

1. Preparation for those who intend to enter industrial or governmental service as physicists or astronomers.
2. Education for those who intend to pursue graduate work in physics or astronomy.
3. Education in the subject matter of physics for prospective teachers of the physical sciences.
4. Undergraduate education for those who will pursue graduate work in the professions: business (e.g., an MBA), law, medicine, etc.
5. Fundamental background for other physical sciences and engineering, in preparation for graduate study in these fields.
6. Physics fundamentals required by the biological science, medical, dental, nursing, and related programs.

For more information, see www.physics.byu.edu/undergraduate/careers.
MAP DISCLAIMER
While every reasonable effort is made to ensure accuracy, there are some student populations that could have exceptions to listed requirements. Please refer to the university catalog and your college advisement center/department for complete guidelines.

DEPARTMENT INFORMATION
FACULTY ADVISORS ASSIGNED BY LAST TWO DIGITS OF BYU ID NUMBER. CONTACT:

Department of Physics and Astronomy
Brigham Young University
N-283 ESC
Provo, UT 84602
Telephone: (801) 422-4361

ADVISEMENT CENTER INFORMATION
Physical and Mathematical Sciences College Advisement Center
Brigham Young University
N-181 ESC
Provo, UT 84602
Telephone: (801) 422-2674